手机版 | 登陆 | 注册 | 留言 | 设首页 | 加收藏
当前位置: 网站首页 > 世界科技全景 > 仿生学 > 文章 当前位置: 仿生学 > 文章

人工神经网络

时间:2019-06-20    点击: 次    来源:网络    作者:佚名 - 小 + 大

人工神经网络


“人脑是如何工作的?”

“人类能否制作模拟人脑的人工神经元?”

多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科

学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述

问题答案的研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领

域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互

相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特

色出发,提出不同的问题,从不同的角度进行研究。

心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和


搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。

生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、

精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计

算机科学家研究这一问题的目的在于寻求新的途径以解决目前不能解决或解

决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适

应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合

产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真

描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接

近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、

总结规律、完成某种运算、识别或过程控制。

人工神经元的研究起源于脑神经元学说。19 世纪末,在生物、生理学领

域,Waldeger 等人创建了神经元学说。人们认识到复杂的神经系统是由数目

繁多的神经元组合而成。大脑皮层包括有 100 亿个以上的神经元,每立方毫

米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自

身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,

再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全

身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但

是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树

突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输

入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都

可与其他神经元的轴突未稍相互联系,形成所谓“突触”。在突触处两神经

元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为■

(15~50)×10-9 米。突触可分为兴奋性与抑制性两种类型,它相应于神经元

之间耦合的极性。每个神经元的突触数目正常,最高可达 105 个。各神经元

之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有

存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的

大脑的某些特征。下面通过人工神经网络与通用的计算机工作特点来对比一

下:

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算

机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是

一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判

断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的

基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息

存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人

脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常

思维活动。

普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互

不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的

预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。

人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许


多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手

势;训练有素的运动员可以表现出非凡的运动技巧等等。

普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活

动要通过总结编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中

改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同

可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知

识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,

一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模

仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些

规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可

以自动发现环境特征和规律性,具有更近似人脑的功能。

人工神经网络早期的研究工作应追溯至本世纪 40 年代。下面以时间顺

序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网

络的发展历史。

1943 年,心理学家 W・Mcculloch 和数理逻辑学家 W・Pitts 在分析、总

结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,

并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络

研究的先驱。

1945 年冯・诺依曼领导的设计小组试制成功存储程序式电子计算机,标

志着电子计算机时代的开始。1948 年,他在研究工作中比较了人脑结构与存

储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结

构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经

网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域

作出了巨大贡献。虽然,冯・诺依曼的名字是与普通计算机联系在一起的,

但他也是人工神经网络研究的先驱之一。

50 年代末,F・Rosenblatt 设计制作了“感知机”,它是一种多层的神

经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当

时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、

声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高

潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字

计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、

模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,

当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它

们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络

相似是完全不可能的;另外,在 1968 年一本名为《感知机》的著作中指出线

性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络

还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络

的前景失去信心。60 年代末期,人工神经网络的研究进入了低潮。

另外,在 60 年代初期,Widrow 提出了自适应线性元件网络,这是一种

连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自

适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人

工神经网络模型。

随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。

80 年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水

平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。


这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家

Hopfield 于 1982 年和 1984 年在美国科学院院刊上发表了两篇关于人工神经

网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及

付诸应用的现实性。随即,一大批学者和研究人员围绕着 Hopfield 提出的

方法展开了进一步的工作,形成了 80 年代中期以来人工神经网络的研究热

潮。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目

前,主要的研究工作集中在以下几个方面:

(1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生

物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机

理。

(2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理

论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网

络模型,以实现计算机馍拟或准备制作硬件,包括网络学习算法的研究。这

方面的工作也称为技术模型研究。

(4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人

工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功

能、构作专家系统、制成机器人等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,

生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,

探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

   

上一篇:跨世纪的研究热点——大脑与人工智能 大脑结构与人工智能

下一篇:人工创造新生物——遗传工程简介

推荐阅读
备案ICP编号  |   QQ:81962480  |  地址:上海金海路  |  电话:12345678910  |  
Copyright © 2019 MAPDF Studio 版权所有,授权www.mapdf.net使用 Powered by MAPDF.net